
How browser render the page

Berat Emre Nebioğlu

supervised by
Kağan Küçük

May 11, 2020

Abstract

This article will focus on how a browser renders a page, providing insight into concepts such a reflow,
repaint and a few experimental browser features useful to any frontend developer. This is an expansive
topic, but here’s a brief rundown.

It is suggested to check suggested reading for more information. The thing we need to take into consid-
eration is, this article wont give you whole details just like a detour as we can presume. As It turns out,
those subjects are like bottomless pit.

How browser render the page 1

CONTENTS

Contents

1 How browser understand the type of page? What do we need here? 3
1.1 Mime types - IANA media types, charset, viewport . 3

1.1.1 Mime types - IANA media types . 3
1.1.2 Charset . 3
1.1.3 Viewport . 3

2 DOCTYPE & MODES 7
2.1 DOCTYPES & Markup Styles . 7

2.1.1 Quirks Mode and Standards Mode . 7
2.2 HTML - Living Standard . 8
2.3 HTML5 . 8

2.3.1 Semantics . 8
2.3.2 Styling . 8

3 DTD 9

4 Rendering 10
4.1 Type of Rendering . 10

4.1.1 Static Rendering . 10
4.1.2 SSR - Server Side Rendering . 10
4.1.3 When to use static rendering? When to use server side rendering? 10
4.1.4 CSR - Client Side Rendering . 10
4.1.5 Difference between server side rendering and client side rendering 10
4.1.6 Downside and Upside of SSR and CSR . 10

4.2 Partial Rendering . 11
4.2.1 Critical Rendering . 11

5 FOUC - Flash of Unstyled Content 12
5.1 Solution of FOUC . 12
5.2 Critical CSS . 13

5.2.1 What is critical CSS? . 13

6 Priorities of assests in the page 14
6.1 Chrome Dev Tools . 14
6.2 Prefetch . 14

6.2.1 Definition . 14
6.2.2 Syntax . 15
6.2.3 Type of Prefetch . 15

6.3 Prerender . 15
6.4 Preload . 15

6.4.1 Definition . 15
6.5 Explanation . 15
6.6 Advantages of Preload (Check Link #9 in the inspired source section.) 15

6.6.1 Syntax . 16
6.6.2 What ”as” attribute include. 16

6.7 Lazy Loading . 16
6.8 Intersection Observer API . 16
6.9 Native Lazy Loading . 17

6.9.1 Loading Attribute Options . 17
6.10 Old style lazy loading . 18

7 Rendering Content 19
7.1 What is render tree? . 19
7.2 What is DOM (Document Object Model) . 20
7.3 What is VDOM? . 20
7.4 Why DOM?, Why VDOM? Prons and cons . 20

7.4.1 DOM . 20
7.5 Language & Framework use DOM or VDOM . 21
7.6 What is CSSOM . 21

How browser render the page 2

CONTENTS

7.7 What scss, sass, less brings extra to web development world? . 21
7.8 Advantages of CSS preprecessor. 21
7.9 Disadvantages of preprecessor. 22
7.10 Spesificity . 22

8 Advanced Content 24
8.1 Browser Rendering Optimizations for Front-end Development . 24

8.1.1 What does into frame . 24
8.1.2 App Lifecycle . 24
8.1.3 Layout Creation . 24
8.1.4 Painting of Screen Pixels . 24
8.1.5 Layer Composition . 24
8.1.6 Layout Trashing . 24

8.2 Css triggers . 25
8.3 Rendering sequence . 26

8.3.1 Layout . 26
8.3.2 Paint . 26
8.3.3 Composittion . 26
8.3.4 Rendering Steps Diagram . 26

8.4 Reflow . 26
8.4.1 Definition . 26
8.4.2 What triggers reflow . 26
8.4.3 Css property that cause reflow . 26

8.5 Repaint . 27
8.5.1 Definition of repaint . 27
8.5.2 Css property that cause reflow . 27
8.5.3 Transform versus position:absolute . 27

8.6 Organizing CSS . 28
8.6.1 Block Element Modifier - BEM . 28
8.6.2 Object Oriented CSS - OOCSS Organizing-css-oocss-smacss-and-bem 28
8.6.3 Scalable and Modular Architecture CSS - SAMACSS Organizing-css-oocss-smacss-and-bem 29
8.6.4 styling methodology for component-based UI development - SUITCSS 29
8.6.5 Normalize CSS . 29

8.7 Reasons not to use IDs in CSS . 30
8.8 HTML <template>tag . 30
8.9 Webworkers . 30

8.9.1 Webworkers real world example . 30
8.10 Webpack . 31

8.10.1 How Webpack favor us? . 31
8.11 LightHouse . 32

8.11.1 What is lighthouse? . 32
8.11.2 What does lighthouse provide us? . 32

9 Web Page Rendering - Step by Step 33

10 Experiment 34
10.1 Reflow, Border Layout . 34
10.2 Repaint, Paint Flashing . 34
10.3 Render Profiling . 35

10.3.1 Panes . 35

11 Conclusion 37

12 Appendix 38
12.1 Suggested Sources & Readings . 38
12.2 Inspired From . 39

13 Referrences 40

How browser render the page 3

1 HOW BROWSER UNDERSTAND THE TYPE OF PAGE? WHAT DO WE NEED HERE?

1 How browser understand the type of page? What do we need here?

1.1 Mime types - IANA media types, charset, viewport

1.1.1 Mime types - IANA media types
Roughly, mimetype is the key for browser to understand how to evaluate the page. If the value is given
wrongly, page will be miss-evaluated. There is some mimetype we can state in the document. These are as
follow;

Text/html It is telling stream will be decipher as HTML by the browser.
Text/plain It is telling stream will be interpreted as plain text by browser
Text/css It is for mentioning there is CSS file.
Text/javascript It is for mentioning there is Javascript file.
Application/octet-stream It is for downloading dialog box.
Application/x-java-applet It is for java-applet.
Application/pdf It is for pdf document

1 2

1.1.2 Charset
You are telling browser with that language page is evaluated. If you omit charset, browser will presume
charset is ISO-8859-1.

What do web browsers do if they don’t find any Content-Type, either in the http headers or the meta tag?
Internet Explorer actually does something quite interesting: it tries to guess, based on the frequency in which
various bytes appear in typical text in typical encodings of various languages, what language and encoding
was used.Internet Explorer’s behaivour.

1.1.3 Viewport
• What is viewport?

Viewport is the area that web page is visible. It can vary according to screensize. Let’s take a look at how the
page looks on laptop and tablet.

Figure 1: Viewport - Laptop

1MIME types. https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
2Mime Type’s standard can be accessed here. https://tools.ietf.org/html/rfc6838

How browser render the page 4

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://tools.ietf.org/html/rfc6838

1 HOW BROWSER UNDERSTAND THE TYPE OF PAGE? WHAT DO WE NEED HERE?

Figure 2: Viewport - Mobile

In order to make the site responsive, you need meta viewport tag <meta name=”viewport” content=
”width=device-width, initial-scale=1.0”>

3

To tell browser what version of markup language will be used. Then browser will decide how page will be
parsed. That also triggers what validator will validate your document.

It is the list of attribute and their corresponding explanation.

• width: Width of the virtual viewport of the device.

• height: Height of the virtual viewport of the device.

• initial-scale: Zoom level when the page is first visited.

• minimum-scale: Minimum zoom level to which a user can zoom the page.

• maximum-scale: Maximum zoom level to which a user can zoom the page.

3If page is not decorated for responsive usage. You will get broken appearence.

How browser render the page 5

1 HOW BROWSER UNDERSTAND THE TYPE OF PAGE? WHAT DO WE NEED HERE?

• user-scalable: Flag which allows the device to zoom in or out.(value= yes/no).

Figure 3: Code Example Code example with viewport

4

4This is inline styling it is for demonstrating purpose. Best practice is to have seperate file for style and markup.

How browser render the page 6

1 HOW BROWSER UNDERSTAND THE TYPE OF PAGE? WHAT DO WE NEED HERE?

Figure 4: Code Example Viewport for laptop and mobile view

5

5You may click f12 and check dev inspector. You will see mobile icon at very very bottom and right side of pane. You can
narrow and expand the page to see how element in the page is located according to current viewport.

How browser render the page 7

2 DOCTYPE & MODES

2 DOCTYPE & MODES

6

2.1 DOCTYPES & Markup Styles
Browser can render the page in two mode. First one is normal mode. One way is explicitely state version of
DOCTYPE. Second is let browser decide what doctpye it it.

Standard Mode

The browser render the page accoding to CSS specs.

7

Quirks Mode

If the browser decide, page is not structured in web standard that are published by https://www.w3.org/,
browser will work on smoothing it out. Consquently you will get some unexpected result. It is always better
to state explicitely the DOCTYPE at the top of document.

2.1.1 Quirks Mode and Standards Mode
In the old days of the web, pages were typically written in two versions: One for Netscape Navigator, and one
for Microsoft Internet Explorer. When the web standards were made at W3C, browsers could not just start
using them, as doing so would break most existing sites on the web. Browsers therefore introduced two modes
to treat new standards compliant sites differently from old legacy sites.

There are now three modes used by the layout engines in web browsers: quirks mode, almost standards mode,
and full standards mode. In quirks mode, layout emulates nonstandard behavior in Navigator 4 and Internet
Explorer 5. This is essential in order to support websites that were built before the widespread adoption of
web standards. In full standards mode, the behavior is (hopefully) the behavior described by the HTML and
CSS specifications. In almost standards mode, there are only a very small number of quirks
implemented.Quirks Mode and Standards Mode

• How do browsers determine which mode to use?

Figure 5: Current DOCTYPE Standard Mode

6HTML Validator - https://validator.w3.org/
7Css specs: https://www.w3.org/Style/CSS/specs.en.html

How browser render the page 8

https://www.w3.org/
https://validator.w3.org/
https://www.w3.org/Style/CSS/specs.en.html

2 DOCTYPE & MODES

The DOCTYPE shown in the example, <!DOCTYPE html>, is the simplest possible, and the one
recommended HTML5. Earlier versions of the HTML standard recommended other variants, but all existing
browsers today will use full standards mode for this DOCTYPE, even the dated Internet Explorer 6. There
are no valid reasons to use a more complicated DOCTYPE. If you do use another DOCTYPE, you may risk
choosing one which triggers almost standards mode or quirks mode.

Make sure you put the DOCTYPE right at the beginning of your HTML document. Anything before the
DOCTYPE, like a comment or an XML declaration will trigger quirks mode in Internet Explorer 9 and older.

In HTML5, the only purpose of the DOCTYPE is to activate full standards mode. Older versions of the
HTML standard gave additional meaning to the DOCTYPE, but no browser has ever used the DOCTYPE for
anything other than switching between quirks mode and standards mode.

8 9 10 11 12

2.2 HTML - Living Standard
Here is the specs. https://html.spec.whatwg.org/multipage/semantics.html#semantics

2.3 HTML5
HTML5 is the latest evolution of the standard that defines HTML. The term represents two different
concepts. It is a new version of the language HTML, with new elements, attributes, and behaviors, and a
larger set of technologies that allows the building of more diverse and powerful Web sites and applications.
This set is sometimes called HTML5 & friends and often shortened to just HTML5.HTML5

2.3.1 Semantics
• Sections and outlines in HTML5.

– These are new tags -><section>, <article>, <nav>, <header>, <footer>and <aside>.

• New semantic elements.

– These are new tags -><mark>, <figure>, <figcaption>, <data>, <time>, <output>, <progress>,
or <meter>and <main>.

2.3.2 Styling
• New background styling feature.

– Box-shadow, filters

• Animating your styles

– Css transition ->https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_
CSS_transitions

• Typography improvement.

– Text-overflow, @font-face

• New presential layout.

– Using multi column layout ->https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Columns/
Using_multi-column_layouts

– Basic concept of flexbox ->https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_
Box_Layout/Basic_Concepts_of_Flexbox

13 14

8Current doctype definition is <!DOCTYPE html>For reliable CSS and JS functionality which depends on having a well formed
DOM, ensure that HTML tags are properly nested and is semantically well formed.

9Quirks mode: https://stackoverflow.com/questions/1695787/what-is-quirks-mode/1695790#1695790
10Quirks mode: https://quirksmode.org/
11Webkit: https://github.com/WebKit/webkit/blob/a58028bd4ef8f5e5082d18e4720d3d23f0d3c54e/Source/WebCore/html/parser/HTMLConstructionSite.cpp#L329

- Line 329
12Mozilla Quirks Mode Behaivour: https://developer.mozilla.org/en-US/docs/Mozilla/Mozilla_quirks_mode_behavior
13Full list and its explanations also the new html elements can be accessed https://developer.mozilla.org/en-US/docs/Web/

Guide/HTML/HTML5. I am just taking relevant groups for the sake of relevancy.
14Beer in mind, animation is css transition is better for mobile performance, whereas animating in javascript is not.

How browser render the page 9

https://html.spec.whatwg.org/multipage/semantics.html#semantics
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_CSS_transitions
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_CSS_transitions
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Columns/Using_multi-column_layouts
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Columns/Using_multi-column_layouts
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox
https://developer.mozilla.org/en-US/docs/Mozilla/Mozilla_quirks_mode_behavior
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

3 DTD

3 DTD

A DTD defines the allowable nodes and allowable properties (”node attributes”), as well as defines the set of
entity replacements. We can think DTD is browser’s assembly language.

DTD is metadata describing the structure of an SGML (or XML) document.

All of this is ”model”, in the MVC structure that is the web. A DTD is the definition of the structure of the
model. An HTML document is then ”an instance of that model”, like a record to a database.

Figure 6: HTML is model, CSS is view and Browser is Controller MVC Figure

Figure 7: How dtd looks

15

15Detailed Info: https://www.w3.org/TR/xhtml1/dtds.html#h-A2

How browser render the page 10

4 RENDERING

4 Rendering

Full article is accessible here. https://html.spec.whatwg.org/multipage/rendering.html#rendering

4.1 Type of Rendering

4.1.1 Static Rendering
Static rendering is a rendering technique that you create html file and serve on the disk in each request.
Nothing rendered on the fly. So it is fast and reliable. The field we use static rendering is content website

4.1.2 SSR - Server Side Rendering
Popular examples for Server Side Rendering are https://nextjs.org/ and https://www.gatsbyjs.org/.
Roughly, server side rendering is a method to render your web page in backend. Browser make a request to
the server and the server generates ready and valid HTML. Browser post stream to the backend. Stream is
converted to HTML with browser engine.

4.1.3 When to use static rendering? When to use server side render-
ing?

• If the response is dynamic. (Server Side Rendering)

• If the response user see will change according to who is viewing it. (Server Side Rendering)

• If the content is static and store in seperate file. Static Rendering

4.1.4 CSR - Client Side Rendering
With a client-side rendering solution, when the user opens your website, his browser makes a request to the
server, and the user gets a response with a single HTML file without any content, loading screen, e.t.c. It’s a
blank page until the browser fetches all linked JavaScripts and lets the browser compile everything before
rendering the content.

4.1.5 Difference between server side rendering and client side render-
ing

• The main difference is that for SSR your server’s response to the browser is the HTML of your page that
is ready to be rendered, while for CSR the browser gets a pretty empty document with links to your
javascript. That means your browser will start rendering the HTML from your server without having
to wait for all the JavaScript to be downloaded and executed. In both cases, React will need to be
downloaded and go through the same process of building a virtual dom and attaching events to make the
page interactive — but for SSR, the user can start viewing the page while all of that is happening. For
the CSR world, you need to wait for all of the above to happen and then have the virtual dom moved to
the browser dom for the page to be viewable.Main difference between SSR and CSR

• CSR have blank page problem in first load. SSR does not have such problem.

4.1.6 Downside and Upside of SSR and CSR
1. SSR TTFB(Time To First Byte)is slower than CSR, because your server will have to spend the time to

create the HTML for your page instead of just sending out a relatively empty response. Time to First
Byte

2. SSR throughput of your server is significantly less than CSR throughput. For react in particular, the
throughput impact is extremely large. ReactDOMServer.renderToString is a synchronous CPU bound
call, which holds the event loop, which means the server will not be able to process any other request till
ReactDOMServer.renderToString completes. Let’s say that it takes you 500ms to SSR your page, that
means you can at most do at most 2 requests per second.SSR throughput

How browser render the page 11

https://html.spec.whatwg.org/multipage/rendering.html#rendering
https://nextjs.org/

4 RENDERING

16 17 18 19

4.2 Partial Rendering
The evaluation of web relies on partial rendering nowadays. This is because refreshing whole page,
reflowing and repainting the page is costy operation.
Partial rendering is rendering tecnique for rendering part of the page instead of whole page. It is the deal of
router for example. When you click button that will just show content of the page withot refreshing the page.

4.2.1 Critical Rendering
Critical rendering is about rendering viewport. If the part of the page is out of viewport it wont be rendered
until you re in the coordinate of the place that is not in the viewport in the initial load.

16if your page relies on the JS to generate all your HTML, then client-side rendering will result in a blank page until the JS
creates all the html.

17Time to First Byte Reading: https://en.wikipedia.org/wiki/Time_to_first_byte
18Throughput Explanation: Hardware strength * code efficiency + network latency = single unit throughput) * connections *

requestors = total throughput
19Long explanation can be found here. https://gist.github.com/spinningcat/e86b14b0b3cc47c04898543bca013e64

How browser render the page 12

https://en.wikipedia.org/wiki/Time_to_first_byte
https://gist.github.com/spinningcat/e86b14b0b3cc47c04898543bca013e64

5 FOUC - FLASH OF UNSTYLED CONTENT

5 FOUC - Flash of Unstyled Content

Initially browser has some value for properties. FOUC is the case when page is rendered with those initial value.

Figure 8: Flash of Unstyled Content Example - Check how menu appearence Flash Style of Content]

As you see in the image, some part of the image is without styling, more accurately part of the page is styled
with predefined styles whereas other part of the page is fully customized.

5.1 Solution of FOUC
• Add some css add to head section of html. Check the figure below.

Figure 9: Piece of HTML code

20

20FOUC article can be found in this link. https://webkit.org/blog/66/the-fouc-problem/

How browser render the page 13

https://webkit.org/blog/66/the-fouc-problem/

5 FOUC - FLASH OF UNSTYLED CONTENT

5.2 Critical CSS

5.2.1 What is critical CSS?
In critical CSS you define above-the-fold content that you see in first load.

Inlining extracted styles in the <head>of the HTML document eliminates the need to make an additional
request to fetch these styles. The remainder of the CSS can be loaded asynchronously.criticalcss

if you have a scrolling one page website, the ”above the fold” content is the stuff at the top, not requiring any
action like scroll.

Above the fold is the upper half of the front page of a newspaper or tabloid where an important news story or
photograph is often located. Papers are often displayed to customers folded so that only the top half of the
front page is visible. Thus, an item that is ”above the fold” may be one that the editors feel will entice people
to buy the paper. Alternatively, it reflects a decision, on the part of the editors, that the article is one of the
day’s most important. By extension, the space above the fold is also preferred by advertisers, since it is the
most prominent and visible even when the newspaper is on stands.Above The Fold

21 22

21the “fold” is relative — different devices will display different amounts of content on initial load
22Google PageSpeed Insight: https://developers.google.com/speed/pagespeed/insights/

How browser render the page 14

https://developers.google.com/speed/pagespeed/insights/

6 PRIORITIES OF ASSESTS IN THE PAGE

6 Priorities of assests in the page

6.1 Chrome Dev Tools

Figure 10: It can be examined in Chrome Dev Tools. Chrome Dev Tools

6.2 Prefetch

6.2.1 Definition
<link rel=”prefetch”>, browser will download resource and cache it (script, stylesheet). It is beneficial to
use that feature, if you use resource again and again. Priority is low.

Figure 11: Prefetched JS

How browser render the page 15

6 PRIORITIES OF ASSESTS IN THE PAGE

6.2.2 Syntax
<link rel=”prefetch” href=”/style.css” as=”style” />

6.2.3 Type of Prefetch
• Link Prefetching

The prefetch link relation type is used to identify a resource that might be required by the next navigation,
and that the user agent SHOULD fetch, such that the user agent can deliver a faster response once the
resource is requested in the future.Link Prefetching

• DNS Prefetching

A DNS or domain name server converts IP addresses in readable website URLs such as yourwebsite.com.
Whenever a user requests an asset being hosted on a particular domain they must perform a DNS lookup and
find which domain name that IP address belongs to. This process takes time and the most DNS lookups that
are required, the longer your visitors will be waiting for a page to load.DNS Prefetching

23 24

6.3 Prerender
Prerender is also render the page besides downloading resources that are requested.

25

6.4 Preload

6.4.1 Definition
<link rel=”preload”>

6.5 Explanation
Preload is used for loading critical resources. This is the list that can be preloaded.

1. Scripts

2. External CSS

3. Images from ¡img>tags

6.6 Advantages of Preload (Check Link #9 in the inspired source section.)
1. Preload does not block onload event.

2. Early loading of fonts.

3. Dynamic loading without execution.

4. Markup based async loader.

5. Responsive loading.

26 27 28 29

23You should note that only cacable source can be prefetched.
24Browser Support: https://caniuse.com/#search=prefetch
25Prerender Browser Support: https://caniuse.com/#search=prerender
26There are limits to how many files a browser can download in parallel. The limits vary between browsers and depend on many

factors, like whether you’re downloading all files from one or from several different servers and whether you are using HTTP/1.1
or HTTP/2 protocol. To render the page as quickly as possible, browsers optimize downloads by assigning priority to each file. To
figure out these priorities, they follow complex schemes based on resource type, position in the markup, and progress of the page
rendering.Factors in Limitation

27Speculative Parsing: https://developer.mozilla.org/en-US/docs/Glossary/speculative_parsing
28Advantage of preload is to give a way to user to define loading mechanism. Performance Mechanism
29Preload Browser Support: https://caniuse.com/#search=preload

How browser render the page 16

https://caniuse.com/#search=prefetch
https://caniuse.com/#search=prerender
https://developer.mozilla.org/en-US/docs/Glossary/speculative_parsing
https://caniuse.com/#search=preload

6 PRIORITIES OF ASSESTS IN THE PAGE

6.6.1 Syntax
<link rel=”preload” href=”/style.css” as=”style” />

6.6.2 What ”as” attribute include.
• Script

• Style

• Image

• Media

• Document

6.7 Lazy Loading
Lazy-loading is a performance optimisation technique that makes it possible to load only the required sections
of your web/mobile pages on demand instead of in bulk.Definition of Lazy Loading

6.8 Intersection Observer API
In old times, you are triggering lazy-load with some events such as scroll, resize, orientationchange These
were not performant and intersection oberserver api comes in play.

It provided us a way to asynchronously observe changes in the intersection of a target element with an
ancestor element or with a top-level document’s viewport. More importantly, it provides us a callback
function that will fire when the element we are observing gets into the viewport.Intersection Observer API

Figure 12: Intersection Observer API Example

30

30Original Code: https://jsfiddle.net/hellyeah/cphfq79y/

How browser render the page 17

https://jsfiddle.net/hellyeah/cphfq79y/

6 PRIORITIES OF ASSESTS IN THE PAGE

6.9 Native Lazy Loading
Chrome loads the images with different properties by respecting wherebout it is located. In chrome 76, it is
possible to use loading to delay loading of image or iframe.

Figure 13: Laziliy Loaded

6.9.1 Loading Attribute Options
1. Lazy: Lazily load image when it is in viewport.

2. Eager: Load right away.

3. Auto: Browser will decide.

31 32 33 34

35

31Original Code: https://jsfiddle.net/hellyeah/kxc7dyor/1/
32Adding width and height with inline style will prevent reflow.
33For refreshers, lazy-loading is a performance optimisation technique that makes it possible to load only the required sections of

your web/mobile pages on demand instead of in bulk. What this means is that for each time users scroll through your application,
contents are served on demand (until they get into the viewport.Definition of Lazy Load

34Intersection Observer Vue Directive: https://gist.github.com/kaankucukx/d0ac401e162f911e3b88f159054e7fb3
35Chrome 76 has loadimg attribıte to lazy-load resources. Lazy Load Feature on chrome

How browser render the page 18

https://gist.github.com/kaankucukx/d0ac401e162f911e3b88f159054e7fb3

6 PRIORITIES OF ASSESTS IN THE PAGE

6.10 Old style lazy loading

Figure 14: Code Example

36

36Original Code: https://jsfiddle.net/hellyeah/kxc7dyor/1/

How browser render the page 19

https://jsfiddle.net/hellyeah/kxc7dyor/1/

7 RENDERING CONTENT

7 Rendering Content

7.1 What is render tree?
Render tree is tree structure that is constructed with the combination of DOM and CSSOM. Browser will
calculate the layout of each visible element and paint them.

Figure 15: Render Tree Visual

The steps of rendering process is

• Read text html and construct a dom

• Process the css

• Construct CSSOM

• Construct render tree (combining DOM and CSSOM)

• Then print it to browser

• Layout operation

• Paint operation

• Compositting operation

How browser render the page 20

7 RENDERING CONTENT

7.2 What is DOM (Document Object Model)
When the browser reads html code, a node is created. A node is javasript object that has some property. We
can think dom as nary tree. One is root the parent at the top and others are child, siblings etc.
Javasript does not understand DOM.

Figure 16: DOM Visual

7.3 What is VDOM?
VDOM is a layer that some frameworks like angular,react, vue etc. do some operation like node insertion, or
update component etc. Advantage of working VDOM compared to DOM, in VDOM you do your work and
apply VDOM to DOM just once. It has some performance gains. Whereas in DOM, when you do insertion,
browser will reflow the dom from zero. Please check below;

1. The Virtual DOM is an abstraction of the HTML DOM. It is lightweight and detached from the browser-
specific implementation details.

2. With VDOM, you only manipulate DOM once. It is performance-efficient.

Figure 17: React functional component and Simple Redux

7.4 Why DOM?, Why VDOM? Prons and cons

7.4.1 DOM
• It is tree structure eay to traverse. It is often time a massive structure.

How browser render the page 21

7 RENDERING CONTENT

• We need to find node to do some changes value or binding event. We need to go through from up to down.

• Maniplating DOM in every single moment is so costy. That means reflow and repaint

7.5 Language & Framework use DOM or VDOM
• Vanilla Javascript (DOM) ->https://eloquentjavascript.net/

• Jquery (DOM) ->https://jquery.com/

• Svelte (DOM) ->https://svelte.dev/

• Angular (VOOM) ->https://angular.io/

• ReactJS (VDOM) ->https://reactjs.org/

• VueJS (VDOM) ->https://vuejs.org/

37

7.6 What is CSSOM
The interaction between HTML and CSS can be maintained with;

1. Id selector

2. Class selector

3. Tag Selector

After constructing the DOM, the browser reads CSS from sources and construct CSSOM. It is like DOM.
Element in CSSOM has CSS rules.
Each browser comes with set of CSS rules. The external css rules are overridden and applied. While css rules
are applied the specificity rules matters that are illustrated below.

• Class has priority then id.

7.7 What scss, sass, less brings extra to web development world?
• Variable

• For loop

• Mixins

• Pre-defined methods

• Import

• Ability to write methods

7.8 Advantages of CSS preprecessor.
• Nested syntax.

• Ability to define variables.

• Ability to define mixins.

• Mathematical functions.

• Operational functions (such as “lighten” and “darken”)

• Joining of multiple files.

37ReactJS vs Svelte: https://medium.com/javascript-in-plain-english/svelte-vs-react-first-impression-1ce5d3ee6889

How browser render the page 22

https://eloquentjavascript.net/
https://jquery.com/
https://svelte.dev/
https://angular.io/
https://reactjs.org/
https://vuejs.org/
https://medium.com/javascript-in-plain-english/svelte-vs-react-first-impression-1ce5d3ee6889

7 RENDERING CONTENT

Figure 18: CSSOM Visual

7.9 Disadvantages of preprecessor.
• Preprocessor needs to be compiled so it slows down development and make debugging hard.

• Big CSS file

• Using Sass may cause of losing benefits of browser’s built-in element inspector.

Dezavantajla ilgili kaynak paylaşabilirsen iyi olur.

7.10 Spesificity
Specificity measure with a weight of CSS selectors. If an element will have class and id together and id and
class have same set of rules in the iah yeahd will be applied. If selectors have same weight, last selector you
define in CSS file will be applied.

Selector Types

• Type Selectors like h1, p or div

• Class selector .class or [class=class]

• Id selector .id or [id=id]

How browser render the page 23

7 RENDERING CONTENT

Figure 19: Specificity #1

Figure 20: Specificity #2

• Specficity determines which css rules will be applied.

• Every selectos have its own weight.

• If two selectors have same set of rules. Stronger selector will defeat weaker selectors.

• This site can give you more information about Specificity

• If selectors are equally strong. Last one will be applied.

• When selectors have an unequal specificity value, the more specific rule is the one that counts.

How browser render the page 24

8 ADVANCED CONTENT

8 Advanced Content

8.1 Browser Rendering Optimizations for Front-end Development
We live in an age where the importance of delivering web services at optimal speed can’t be
overemphasized. As the payload transmitted by web applications increase, developers must
adopt best practices to ensure that data packets are delivered almost instantaneously, hence
providing users with an overall exemplary experience.

Some of the widely adopted best practices in web development today are image compression,
code minification, code bundling (with tools such as Webpack), and so on. These practices
already have the effect of improving user satisfaction, but it is possible to achieve more when
the developer understands the underlying steps that guide the rendering of web applications to
the DOM.Important of Rendering Optimization

8.1.1 What does into frame
1. Browser will get stream that includes HTML and CSS as stream.

2. HTML is parse into DOM and CSS is parsed into CSSOM they combine info render tree.

3. Each node of render tree is a frame.

8.1.2 App Lifecycle
App Lifecycle

1. Load: Before a user can interact with a web application, it has to be loaded first. This is the first stage
in the app lifecycle and it is important to aim at reducing (ideally at 1s) the load time to the smallest
number possible.

2. Idle: After an application is loaded, it usually becomes idle; waiting on the user to interact with it. The
idle block is usually around 50ms long and provides the developer with the opportunity to do the heavy
lifting, such as the loading the assets (images, videos, comments section) that a user might access later.

3. Animation: When the user starts interacting with the application and the Idle stage is over, the appli-
cation has to react properly to user interaction (and input) without any visible delay.

4. Response

8.1.3 Layout Creation
A major performance bottleneck is layout thrashing. This occurs when requests for geometric values
interleaved with style changes are made in JavaScript and causes the browser to reflow the layout.Reflow
problem

8.1.4 Painting of Screen Pixels
Painting occurs when the browser starts filling in screen pixels. This involves drawing out all visual elements
on the screen. This is done on multiple surfaces, called layers. Painting

8.1.5 Layer Composition
The browser engine does some layer management by first considering the styles and elements and how they
are ordered, then tries to figure out what layers are needed for the page and updates the layer tree
accordingly. Layer Composition

8.1.6 Layout Trashing
Layout is what browser figures out following;

• Their size

• Location in the page

How browser render the page 25

8 ADVANCED CONTENT

This process is called layout in chrome, opera, safari, internet explorer and reflow in firefox. The biggest
concern here about composing is as follow;

• The number of element that requires layout.

• The complexity of layout.

38 39 40 41 42 43 44

If it’s not possible to avoid layout then the key is to once again use Chrome DevTools to see
how long it’s taking, and determine if layout is the cause of a bottleneck. Firstly, open
DevTools, go to the Timeline tab, hit record and interact with your site. When you stop
recording you’ll see a breakdown of how your site performed: LayoutTrashing

Figure 21: Developer Tools

8.2 Css triggers
That some changes can trigger more changes. Subsequent changes to the layout, that is. You typically want to
minmize changes to the DOM. This is most important for complex layouts, where it can severely impact UI
responsiveness.

45

38If you design the page that requires layout ”that step include calculating geomery of the page, draw elements, replace each of
them to correct place”, will cost you sometime. So it is better to avoid layout (reflow)

39Avoid forced synchronous layouts and layout thrashing; read style values then make style changes. Layout Trashing
40There is a problem when elements are in same layer. To fix this problem use will-change:transform. will-change:transform
41Visual change that is done by Javascript ot CSS will initialize series of events such as recalculate the style.
42If change in the geometry, browser will create a new layout, repaints elements that are effected and re-composite them.
43Property like font-color, backgrouınd-color only triggers re-paint.
44Property like position may be the reason of chage of all layout.
45Detaied Info: https://csstriggers.com/

How browser render the page 26

8 ADVANCED CONTENT

8.3 Rendering sequence

8.3.1 Layout
CSSOM and DOM are combined into render tree Render tree is used for computing the layout each visible
elements. Briefly, layout is about drawing each element with its geometry, and replace those to location in
window.

8.3.2 Paint
Paint each pixel in the web page.

8.3.3 Composittion
When sections of the document are drawn in different layers, overlapping each other, compositing is necessary
to ensure they are drawn to the screen in the right order and the content is rendered correctly.
Compositting can be the reason of reflow and reflow can spark repaint.

8.3.4 Rendering Steps Diagram

Figure 22: Critical Rendering Path

8.4 Reflow

8.4.1 Definition
A reflow computes the layout of the page. A reflow on an element recomputes the dimensions and position of
the element, and it also triggers further reflows on that element’s children, ancestors and elements that appear
after it in the DOM. Then it calls a final repaint. Reflowing is very expensive,

8.4.2 What triggers reflow
• Insert, remove or update an element in the DOM

• Modify content on the page, e.g. the text in an input box

• Move a DOM element

• Animate a DOM element

• Take measurements of an element such as offsetHeight or getComputedStyle

• Change a CSS style

• Change the className of an element

• Add or remove a stylesheet

• Resize the window

• Scroll

8.4.3 Css property that cause reflow
Position is the one property that triggers reflow. The alternative usage of position is transform. Transform
wont trigger reflow.

How browser render the page 27

8 ADVANCED CONTENT

8.5 Repaint

8.5.1 Definition of repaint
Repaint is colorizing each element in the page. It happen after whole page is drawn.

8.5.2 Css property that cause reflow
Background color ->Bura içeriğini nasıl daha güzel verebilrim yönlendirebilirsen sevinirim.

8.5.3 Transform versus position:absolute
The drawing order consist of The layout layer, paint layer, and compositor layer.

Changing left or margin will trigger a redraw in layout layer (which, in turn, will trigger redraws in the other
two layers) for the animated element and for subsequent elements in DOM.

Changing transform will trigger a redraw in compositor layer only for the animated element (subsequent
elements in DOM will not be redrawn).

Translate happens when all the layout process complete, further it even already painted, what is remaining is
a matter where to put the element, so it has no interaction with the existing layout.

Figure 23: Position and Transform

46 47

46Original Code: https://jsfiddle.net/hellyeah/6mu2abhs/
47More insights: https://developers.google.com/web/fundamentals/performance/rendering/

How browser render the page 28

https://jsfiddle.net/hellyeah/6mu2abhs/
https://developers.google.com/web/fundamentals/performance/rendering/

8 ADVANCED CONTENT

8.6 Organizing CSS

8.6.1 Block Element Modifier - BEM
• BEM class starts with a block, which is an object name.

• Children of that block, you add an element, separating it with two underscores.

• you can modify any class (block or element) by adding a modifier, separated with two hyphens.

Figure 24: BEM Pattern

48

8.6.2 Object Oriented CSS - OOCSS Organizing-css-oocss-smacss-and-
bem

OOCSS is a programming paradigm. OOCSS stands for Object Oriented CSS, so it’s best understood in the
context of Object Oriented programming: classic (spaghetti) CSS vs. OOCSS is a bit like procedural
(spaghetti) backend code vs. Object-Oriented backend code.

OOCSS focuses on flexible, modular, swappable components that do One Thing Well. OOCSS focuses on the
single responsibility principle, separation of concerns, and much more of the foundational concepts of Object
Oriented Programming.

For a great introduction to OOCSS, this post on the OOCSS Media Object (written by the/one of the people
behind OOCSS) shows an example of what a CSS object looks like, and some of the benefits of using one.

48Detailed Info: BEM - http://getbem.com/introduction/

How browser render the page 29

http://getbem.com/introduction/

8 ADVANCED CONTENT

Figure 25: OOCSS Pattern

8.6.3 Scalable and Modular Architecture CSS - SAMACSS Organizing-
css-oocss-smacss-and-bem

SMACSS stands for Scalable and Modular Architecture for CSS. It’s a book and a methodology for writing
CSS (created by Jonathan Snook), but its most significant and influential aspect is its organizational system,
which is designed to provide a set of buckets into which CSS should be organized. To learn more, check out
the SMACSS web site.

8.6.4 styling methodology for component-based UI development - SUITCSS
SUITCSS is another pattern for organizing CSS in semantic way. Let’s examine the pattern with code
example.

Figure 26: SUITCSS Pattern

8.6.5 Normalize CSS
Normalize CSS is out there to maintain consistency amongst browsers. It supports wide range of browsers.
That also normalize HTML5 elements, typography, list, embedded content, form and tables.

• Preserve useful browser defaults.

• Normalize styles for a wide range of HTML elements.

How browser render the page 30

8 ADVANCED CONTENT

• Correct bugs and common browser inconsistencies.

• Improve usability with subtle improvements.

49 50 51 52

8.7 Reasons not to use IDs in CSS
Here is couple of reasons to use class over id in CSS.

• Class specificity is lower than ID specificity.

• Classes can be reused.

• A consistent convention.

• An element can have several classes, but only one ID.

8.8 HTML <template>tag
with <template>you can build a web component that wont be rendered in first page load.

Figure 27: HTML template tag example

8.9 Webworkers
Webworkers async, isolated.

Webworkers is the workers that runs scripts in the background. Web Workers allow you to do things like fire
up long-running scripts to handle computationally intensive tasks, but without blocking the UI or other
scripts to handle user interactions. Webworker is isolated thread.

The simple usage of webworkers is computationally expensive task. We can take a look at simple webworkers
example in the next section.

53 54

8.9.1 Webworkers real world example
• Worker() constructor create aworker and returns it.

• Onmessage event handler recieve message from handler.

• postmessage() method send the message to worker when prime number is found.

49Article: http://nicolasgallagher.com/about-normalize-css/
50Normalize css is alternative to css reset with some difference that are mentioned here.
51Normalize : https://cdnjs.com/libraries/normalize
52Maintainable CSS: https://www.integralist.co.uk/posts/bem/#4
53Detailed Info: Web Workers - https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
54More insights can be found here. https://html.spec.whatwg.org/multipage/workers.html#workers

How browser render the page 31

http://nicolasgallagher.com/about-normalize-css/
https://cdnjs.com/libraries/normalize
https://www.integralist.co.uk/posts/bem/#4
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://html.spec.whatwg.org/multipage/workers.html#workers

8 ADVANCED CONTENT

Figure 28: Piece of HTML code Web Workers - HTML]

Figure 29: Piece of HTML code Web Workers - Javascript]

8.10 Webpack
Webpack is a module bundler. Webpack can take care of bundling alongside a separate task runner. However,
the line between bundler and task runner has become blurred thanks to community developed webpack
plugins. Sometimes these plugins are used to perform tasks that are usually done outside of webpack, such as
cleaning the build directory or deploying the build. Webpack

8.10.1 How Webpack favor us?
1. Webpack gives you module system.

2. Thanks to webpack, we can import module from spesific place.

3. Webpack is bundling tool. It bundle CSS and Javascript and prepare well structured production environ-
ment.

4. With webpack we can use npm that solves dependency issues in ease.

55 56

55Latest version of webpack 5.0.0beta - Check: https://github.com/webpack/webpack/releases
56At its core, webpack is a static module bundler for modern JavaScript applications. When webpack rocesses your application, it

internally builds a dependency graph which maps every module your project needs and generates one or more bundles.webpackbundle

How browser render the page 32

https://github.com/webpack/webpack/releases

8 ADVANCED CONTENT

8.11 LightHouse

8.11.1 What is lighthouse?
Lighthouse is an open-source, automated tool for improving the quality of web pages. You can run it against
any web page, public or requiring authentication. It has audits for performance, accessibility, progressive web
apps, SEO and more.

You can run Lighthouse in Chrome DevTools, from the command line, or as a Node module. You give
Lighthouse a URL to audit, it runs a series of audits against the page, and then it generates a report on how
well the page did. From there, use the failing audits as indicators on how to improve the page. Each audit has
a reference doc explaining why the audit is important, as well as how to fix it.Lighthouse

8.11.2 What does lighthouse provide us?
First Contextual Paint: First Contentful Paint marks the time at which the first text or image is painted.
contextual

First Meaningful Paint: First Meaningful Paint measures when the primary content of a page is visible.

Properly Size Image: Serve images that are appropriately-sized to save cellular data and improve load
time. size

All text remains visible during webfont loads: Leverage the font-display CSS feature to ensure text is
user-visible while webfonts are loading. font

[user-scalable=”no”] is not used in the ¡meta name=”viewport”>element and the
[maximum-scale] attribute is not less than 5: Disabling zooming is problematic for users with low vision
who rely on screen magnification to properly see the contents of a web page. zoom

Has a <meta name=”viewport”>tag with width or initial-scale: Add a ‘¡meta name=”viewport”>‘
tag to optimize your app for mobile screens.meta

Content is sized correctly for viewport: If the width of your app’s content doesn’t match the width of
the viewport, your app might not be optimized for mobile screens.content

57

57Lighthouse give more information about your page. Some restricted information are given here for being
relevant to article.

How browser render the page 33

9 WEB PAGE RENDERING - STEP BY STEP

9 Web Page Rendering - Step by Step

• The DOM (Document Object Model) is formed from the HTML that is received from a server.

• Styles are loaded and parsed, forming the CSSOM (CSS Object Model).

• On top of DOM and CSSOM, a rendering tree is created, which is a set of objects to be rendered (Webkit
calls each of those a ”renderer” or ”render object”, while in Gecko it’s a ”frame”). Render tree reflects the
DOM structure except for invisible elements (like the <head>tag or elements that have display:none; set).
Each text string is represented in the rendering tree as a separate renderer. Each of the rendering objects
contains its corresponding DOM object (or a text block) plus the calculated styles. In other words, the
render tree describes the visual representation of a DOM.

• For each render tree element, its coordinates are calculated, which is called ”layout”. Browsers use a flow
method which only required one pass to layout all the elements (tables require more than one pass).

• Finally, this gets actually displayed in a browser window, a process called ”painting”.

How browser render the page 34

10 EXPERIMENT

10 Experiment

In those examples, I aim to show how browser behaves in terms of reflow, reppaint and performance.

10.1 Reflow, Border Layout
Reflow is the name of the web browser process for re-calculating the positions and geometries of elements in
the document, for the purpose of re-rendering part or all of the document. Because reflow is a user-blocking
operation in the browser, it is useful for developers to understand how to improve reflow time and also to
understand the effects of various document properties (DOM depth, CSS rule efficiency, different types of style
changes) on reflow time. Sometimes reflowing a single element in the document may require reflowing its
parent elements and also any elements which follow it.Why reflow is important

Figure 30: Reflow Figure

10.2 Repaint, Paint Flashing
Painting is the operation browser colorize elements pixel by pixel. Each reflow namely calculating layout may
trigger re-paint.

Figure 31: Repaint Figure

58

58Example Code: https://jsfiddle.net/qzfj6xug/

How browser render the page 35

10 EXPERIMENT

10.3 Render Profiling
We will check the performangooce of the page. This test will give us necessary informations what brower
handles in the page load. So we can concern experiment as a summary of that article. There is more than that
actually. You can check [Lighthouse] section for that. I strongly recommend this.

Users expect pages to be interactive and smooth. Each stage in the pixel pipeline represents an
opportunity to introduce jank. Learn about tools and strategies to identify and fix common
problems that slow down runtime performance.Runtime Performance

Something there is you need to careful about. Firstly rule is ”kiss”, stick to that rule and you will be fine.
Otherwise you will find yourself feel hadhache. I will enlist what you shouldn’t do.

1. Dont force javascript the browser to calculate steps that is discussed above.

2. Dont overenginner about your css. Follow block element modifier principle.

3. Watch out painting bottlenecks

Lets do profilling.

10.3.1 Panes

Figure 32: Flow Chart Diagram

• First pane is for FPS (frame per second)

• Second pane is for CPU usage

• Third one is for layout - painting and composite

Figure 33: Flow Chart Diagram

How browser render the page 36

10 EXPERIMENT

Figure 34: Summary

59 60

59Check: https://httparchive.org/reports/page-weight
60Related Reading: https://developers.google.com/web/fundamentals/performance/rendering/

reduce-the-scope-and-complexity-of-style-calculations

How browser render the page 37

https://httparchive.org/reports/page-weight
https://developers.google.com/web/fundamentals/performance/rendering/reduce-the-scope-and-complexity-of-style-calculations
https://developers.google.com/web/fundamentals/performance/rendering/reduce-the-scope-and-complexity-of-style-calculations

11 CONCLUSION

11 Conclusion

This article can be evaluated as a semantic roadmap about rendering page. It is possible some issues are
missed here. It is not really plausible to guarantee full coverage about how browser render the page to be
honest. It is really broad topic. The motivation here, make developer step into this ecosystem.

It is suggested to you to check ”Suggested sources and reading sections”. In there you can find lots of
information about the importantce that I try to emphasize here.

It is possible to find some real world examples. Thanks to that, It is easy to understand gist of what we try to
handle here. Not last but least, The advanced content give some tips about how we combine techniques and
terminologies in real world.

How browser render the page 38

12 APPENDIX

12 Appendix

12.1 Suggested Sources & Readings
Web Stadard

• https://www.w3.org/

Web Community

• https://whatwg.org/

Web Docs

• https://developer.mozilla.org/en-US/docs/Web

• https://webplatform.github.io/

• https://css-tricks.com/

• http://html5doctor.com/

• https://html5please.com/

• https://developers.google.com/web

• https://www.flexboxpatterns.com/

• https://maintainablecss.com/

• http://learnlayout.com/

• https://www.w3.org/wiki/Traversing_the_DOM#Growing_trees

• https://www.youtube.com/user/DevTipsForDesigners/playlists?shelf_id=0&view=1&sort=dd

• https://www.youtube.com/watch?v=OxIDLw0M-m0&list=PL4cUxeGkcC9ij8CfkAY2RAGb-tmkNwQHG

• https://itnext.io/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969

Check Support

• https://caniuse.com/

Validator

• https://validator.w3.org/

• https://jigsaw.w3.org/css-validator/

Inspector

• http://articles.asmcbain.net/articles/inspector/

• https://debugbrowser.com/

• https://developers.google.com/web/tools/chrome-devtools?utm_source=dcc&utm_medium=redirect&

utm_campaign=2018Q2

• https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/

samples/bg182326(v=vs.85)?redirectedfrom=MSDN

• https://support.apple.com/tr-tr/guide/safari-developer/welcome/mac

• https://developer.mozilla.org/en-US/docs/Tools

Betterment

• http://jslint.com/

• http://csslint.net/

How browser render the page 39

https://www.w3.org/
https://whatwg.org/
https://developer.mozilla.org/en-US/docs/Web
https://webplatform.github.io/
https://css-tricks.com/
http://html5doctor.com/
https://html5please.com/
https://developers.google.com/web
https://www.flexboxpatterns.com/
https://maintainablecss.com/
http://learnlayout.com/
https://www.w3.org/wiki/Traversing_the_DOM#Growing_trees
https://www.youtube.com/user/DevTipsForDesigners/playlists?shelf_id=0&view=1&sort=dd
https://www.youtube.com/watch?v=OxIDLw0M-m0&list=PL4cUxeGkcC9ij8CfkAY2RAGb-tmkNwQHG
https://itnext.io/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969
https://caniuse.com/
https://validator.w3.org/
https://jigsaw.w3.org/css-validator/
http://articles.asmcbain.net/articles/inspector/
https://debugbrowser.com/
https://developers.google.com/web/tools/chrome-devtools?utm_source=dcc&utm_medium=redirect&utm_campaign=2018Q2
https://developers.google.com/web/tools/chrome-devtools?utm_source=dcc&utm_medium=redirect&utm_campaign=2018Q2
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/samples/bg182326(v=vs.85)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/samples/bg182326(v=vs.85)?redirectedfrom=MSDN
https://support.apple.com/tr-tr/guide/safari-developer/welcome/mac
https://developer.mozilla.org/en-US/docs/Tools
http://jslint.com/
http://csslint.net/

12 APPENDIX

• https://beautifier.io/

• https://github.com/chriswrightdesign/websites-for-non-jerks

• https://gist.github.com/paulirish/5d52fb081b3570c81e3a

Color

• https://snook.ca/technical/colour_contrast/colour.html#fg=33FF33,bg=333333

• https://contrast-ratio.com/

Accessibility

• https://a11yproject.com/

Coding Style

• https://github.com/airbnb

User Style

• https://github.com/amcgregor/userstyles#readme

Problem Solving

• https://stackoverflow.com/help/minimal-reproducible-example

• http://xyproblem.info/

Tools & Projects

• https://www.quicklycode.com/?s=css

• https://plainjs.com/

• https://gohugo.io/

12.2 Inspired From
1. https://webplatform.github.io/docs/guides/doctypes_and_markup_styles/

2. https://www.w3.org/wiki/Doctypes_and_markup_styles

3. https://www.valuecoders.com/blog/technology-and-apps/top-10-advantages-of-html5-development/

4. https://blog.jakoblind.no/whats-the-advantage-with-webpack/

5. https://scotch.io/bar-talk/native-lazy-loading-launched-on-chrome-76

6. https://hub.packtpub.com/google-chrome-76-now-supports-native-lazy-loading/

7. https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

8. https://frontarm.com/james-k-nelson/static-vs-server-rendering/

9. https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/

How browser render the page 40

https://beautifier.io/
https://github.com/chriswrightdesign/websites-for-non-jerks
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
https://snook.ca/technical/colour_contrast/colour.html#fg=33FF33,bg=333333
https://contrast-ratio.com/
https://a11yproject.com/
https://github.com/airbnb
https://github.com/amcgregor/userstyles#readme
https://stackoverflow.com/help/minimal-reproducible-example
http://xyproblem.info/
https://www.quicklycode.com/?s=css
https://plainjs.com/
https://gohugo.io/
https://webplatform.github.io/docs/guides/doctypes_and_markup_styles/
https://www.w3.org/wiki/Doctypes_and_markup_styles
https://www.valuecoders.com/blog/technology-and-apps/top-10-advantages-of-html5-development/
https://blog.jakoblind.no/whats-the-advantage-with-webpack/
https://scotch.io/bar-talk/native-lazy-loading-launched-on-chrome-76
https://hub.packtpub.com/google-chrome-76-now-supports-native-lazy-loading/
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://frontarm.com/james-k-nelson/static-vs-server-rendering/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/

13 REFERRENCES

13 Referrences

1. https://www.geeksforgeeks.org/html-viewport-meta-tag-for-responsive-web-design/

2. https://webpack.js.org/

3. https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode

4. https://developers.google.com/web/tools/chrome-devtools/open

5. https://tinyurl.com/u5jdwyq

6. https://html.spec.whatwg.org/multipage/semantics.html#semantics

7. https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

8. https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode

9. http://f.cl.ly/items/0P0g0B3U2y2H0y3E1E38/Screen+Shot+2017-07-30+at+05.15.37.png

10. https://developers.google.com/web/tools/lighthouse/

11. https://web.dev/first-contentful-paint/?utm_source=lighthouse&utm_medium=devtools

12. https://web.dev/first-meaningful-paint/?utm_source=lighthouse&utm_medium=devtools

13. https://web.dev/font-display/?utm_source=lighthouse&utm_medium=devtools

14. https://web.dev/meta-viewport/?utm_source=lighthouse&utm_medium=devtools

15. https://web.dev/uses-responsive-images/?utm_source=lighthouse&utm_medium=devtools

16. https://web.dev/viewport/?utm_source=lighthouse&utm_medium=devtools

17. https://web.dev/content-width/?utm_source=lighthouse&utm_medium=devtools

18. https://webpack.js.org/concepts/

19. https://codepen.io/eitanp461/pen/BRLZYq/

20. https://web.dev/native-lazy-loading/

21. https://scotch.io/bar-talk/native-lazy-loading-launched-on-chrome-76

22. https://developers.google.com/web/tools/chrome-devtools/rendering-tools

23. https://tinyurl.com/qtzr5h4

24. https://tinyurl.com/wgtn3z5

25. https://css-tricks.com/almanac/properties/w/will-change/#:~:text=The%20will%2Dchange%20property%

20in,browser%20optimizations%20will%20be%20applied.

26. https://css-tricks.com/why-would-i-use-a-webpack/

27. https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

28. https://hacks.mozilla.org/2017/09/building-the-dom-faster-speculative-parsing-async-defer-and-preload/

29. https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/

30. https://w3c.github.io/resource-hints/#prefetch

31. https://html.spec.whatwg.org/multipage/workers.html#workers

32. https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

33. https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing

34. https://mattstauffer.com/blog/organizing-css-oocss-smacss-and-bem/

35. about-normalize-css

How browser render the page 41

https://www.geeksforgeeks.org/html-viewport-meta-tag-for-responsive-web-design/
https://webpack.js.org/
https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode
https://developers.google.com/web/tools/chrome-devtools/open
https://tinyurl.com/u5jdwyq
https://html.spec.whatwg.org/multipage/semantics.html#semantics
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/HTML/Quirks_Mode_and_Standards_Mode
http://f.cl.ly/items/0P0g0B3U2y2H0y3E1E38/Screen+Shot+2017-07-30+at+05.15.37.png
https://developers.google.com/web/tools/lighthouse/
https://web.dev/first-contentful-paint/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/first-meaningful-paint/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/font-display/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/meta-viewport/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/uses-responsive-images/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/viewport/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/content-width/?utm_source=lighthouse&utm_medium=devtools
https://webpack.js.org/concepts/
https://codepen.io/eitanp461/pen/BRLZYq/
https://web.dev/native-lazy-loading/
https://scotch.io/bar-talk/native-lazy-loading-launched-on-chrome-76
https://developers.google.com/web/tools/chrome-devtools/rendering-tools
https://tinyurl.com/qtzr5h4
https://tinyurl.com/wgtn3z5
https://css-tricks.com/almanac/properties/w/will-change/#:~:text=The%20will%2Dchange%20property%20in,browser%20optimizations%20will%20be%20applied.
https://css-tricks.com/almanac/properties/w/will-change/#:~:text=The%20will%2Dchange%20property%20in,browser%20optimizations%20will%20be%20applied.
https://css-tricks.com/why-would-i-use-a-webpack/
https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8
https://hacks.mozilla.org/2017/09/building-the-dom-faster-speculative-parsing-async-defer-and-preload/
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/
https://w3c.github.io/resource-hints/#prefetch
https://html.spec.whatwg.org/multipage/workers.html#workers
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing
https://mattstauffer.com/blog/organizing-css-oocss-smacss-and-bem/
about-normalize-css

13 REFERRENCES

36. https://web.dev/extract-critical-css/

37. https://en.wikipedia.org/wiki/Above_the_fold

38. google-chrome-76-now-supports-native-lazy-loading

39. https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

How browser render the page 42

https://web.dev/extract-critical-css/
https://en.wikipedia.org/wiki/Above_the_fold
google-chrome-76-now-supports-native-lazy-loading
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

	How browser understand the type of page? What do we need here?
	Mime types - IANA media types, charset, viewport
	Mime types - IANA media types
	Charset
	Viewport

	DOCTYPE & MODES
	DOCTYPES & Markup Styles
	Quirks Mode and Standards Mode

	HTML - Living Standard
	HTML5
	Semantics
	Styling

	DTD
	Rendering
	Type of Rendering
	Static Rendering
	SSR - Server Side Rendering
	When to use static rendering? When to use server side rendering?
	CSR - Client Side Rendering
	Difference between server side rendering and client side rendering
	Downside and Upside of SSR and CSR

	Partial Rendering
	Critical Rendering

	FOUC - Flash of Unstyled Content
	Solution of FOUC
	Critical CSS
	What is critical CSS?

	Priorities of assests in the page
	Chrome Dev Tools
	Prefetch
	Definition
	Syntax
	Type of Prefetch

	Prerender
	Preload
	Definition

	Explanation
	Advantages of Preload (Check Link #9 in the inspired source section.)
	Syntax
	What "as" attribute include.

	Lazy Loading
	Intersection Observer API
	Native Lazy Loading
	Loading Attribute Options

	Old style lazy loading

	Rendering Content
	What is render tree?
	What is DOM (Document Object Model)
	What is VDOM?
	Why DOM?, Why VDOM? Prons and cons
	DOM

	Language & Framework use DOM or VDOM
	What is CSSOM
	What scss, sass, less brings extra to web development world?
	Advantages of CSS preprecessor.
	Disadvantages of preprecessor.
	Spesificity

	Advanced Content
	Browser Rendering Optimizations for Front-end Development
	What does into frame
	App Lifecycle
	Layout Creation
	Painting of Screen Pixels
	Layer Composition
	Layout Trashing

	Css triggers
	Rendering sequence
	Layout
	Paint
	Composittion
	Rendering Steps Diagram

	Reflow
	Definition
	What triggers reflow
	Css property that cause reflow

	Repaint
	Definition of repaint
	Css property that cause reflow
	Transform versus position:absolute

	Organizing CSS
	Block Element Modifier - BEM
	Object Oriented CSS - OOCSS [organizingcss]Organizing-css-oocss-smacss-and-bem
	Scalable and Modular Architecture CSS - SAMACSS [organizingcss]Organizing-css-oocss-smacss-and-bem
	styling methodology for component-based UI development - SUITCSS
	Normalize CSS

	Reasons not to use IDs in CSS
	HTML <template>tag
	Webworkers
	Webworkers real world example

	Webpack
	How Webpack favor us?

	LightHouse
	What is lighthouse?
	What does lighthouse provide us?

	Web Page Rendering - Step by Step
	Experiment
	Reflow, Border Layout
	Repaint, Paint Flashing
	Render Profiling
	Panes

	Conclusion
	Appendix
	Suggested Sources & Readings
	Inspired From

	Referrences

